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A computational study of the penetration of a blade into the core of an initially
columnar vortex in an incompressible viscous fluid and the subsequent cutting of the
vortex is reported for the case where the blade axis is initially orthogonal to the vortex
axis. The vortex is advected toward the fixed blade by a free-stream velocity oriented
tangent to the blade chord, where the free-stream speed is sufficiently large that the
vortex does not induce ejection of vorticity from the blade boundary layer prior to
impact of the vortex core with the blade leading edge. A range of computations are
performed for cases both with and without ambient axial flow in the vortex core.
As the blade leading edge penetrates into the vortex core, cross-diffusion between
the columnar vortex and the blade boundary layer causes vortex lines originating in
the columnar vortex to rapidly reconnect to those in the blade boundary layer. This
cutting process is found to be always incomplete however, due to a change in sign
of the spanwise vortex-induced velocity along the leading edge as the vortex is cut,
leaving a thin vortex sheet that wraps around the blade leading edge. Cutting of a
vortex with non-zero axial flow causes an asymmetry that results in an impulsive lift
force on the blade. This lift force has maximum magnitude during the time period
where the blade leading edge penetrates into the vortex core. Both the vortex cutting
process and the unsteady lift force on the blade are found to be approximately
independent of Reynolds number for the various cases examined.

1. Introduction
Orthogonal vortex–blade interaction occurs when a blade or airfoil passes through

a columnar vortex structure such that both the blade spanwise direction and the
direction of relative blade–vortex motion are orthogonal to the vortex axis. This type
of vortex–blade interaction is commonly observed for helicopters in slow flight or
hover conditions, in which the rotor wake vortices are advected down and impinge
upon the helicopter tail rotor and tail section, leading to noise generation and
impulsive moments on the vehicle (Leverton, Pollard & Wills 1977). A similar
interaction occurs in pump intakes, where the intake vortex is repeatedly chopped
by the pump impeller (Nagahara, Sato & Okamura 2001). Orthogonal vortex–blade
interaction is commonly observed in a wide variety of propeller, fan and turbine situ-
ations due to ingestion of vortical structures into the rotor slipstream. One example of
such an interaction occurs, for instance, when upstream boundary-layer turbulence is
ingested into a ship or torpedo propeller, or when atmospheric turbulence is ingested
into a helicopter rotor. In many such applications, the vortex exhibits a strong ambient
axial core flow in addition to its circulatory motion. During orthogonal vortex–blade
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interaction, the blade experiences a sudden force during its penetration into the vortex
core, which can lead to degradation of rotor or propeller performance, material fatigue,
and generation of undesirable noise.

Early experimental work on orthogonal vortex–blade interaction was conducted by
Ahmadi (1986), Cary (1987), and Johnston & Sullivan (1992). These studies measured
unsteady pressure on the blade surface and sound generation, and in some cases
report flow visualization using smoke in a wind tunnel. The studies examine vortices
generated by various means (usually from a rotating upstream blade) impacting on a
fixed downstream body. While these studies give a first view of some of the complex
physics associated with the vortex response to cutting by a blade, it is difficult to fully
characterize the vortex–blade interaction from these results because the distinguishing
features of the vortex flow immediately prior to cutting (e.g. strength, core radius,
vorticity profile, axial velocity) are generally not known. The use of smoke for marking
the flow in these experiments also yields limited information on vortex response as
the blade impacts on the vortex core.

Other more recent experimental studies have focused on the vortex core response,
including wave motion on the vortex core and ejection of boundary-layer vorticity
from the blade. An experimental study of cutting of a vortex ring by a thin plate is
reported by Weigand & Gharib (1997), who used particle-image velocimetry (PIV)
to detect wave motion on the vortex core following cutting by the blade. An experi-
mental study of the effect of vorticity ejected from the blade boundary layer on the
vortex for cases with slow relative velocity between the vortex and blade (impact
velocity) is reported by Krishnamoorthy & Marshall (1998), using a columnar intake
vortex in water together with particle-image velocimetry (PIV) and laser-induced
fluorescence (LIF) based diagnostics. For sufficiently slow blade motion, the vorticity
ejected from the blade boundary layer wraps around the incident vortex, and can
in some cases even disrupt the primary vortex, prior to vortex collision with the
blade.

A computational and experimental study of the response of a vortex with non-zero
axial flow following impulsive cutting by a thin blade is reported by Marshall &
Krishnamoorthy (1997), where the computations are performed using an inviscid
axisymmetric vortex method and the experiments are performed for a blade traversed
through an intake vortex using LIF and PIV. Following cutting of a vortex with
downward axial flow by a blade, the core radius of the vortex is observed to increase
on the upstream (or ‘compression’) side and to decrease on the downstream (or
‘expansion’) side. For subcritical vortices, both an upstream-propagating ‘compression
wave’ and a downstream-propagating ‘expansion wave’ are observed to form in the
computations following cutting of the vortex by a thin blade. These waves consist of
oscillating patterns of azimuthal vorticity, where far from the blade the compression
wave has the form of a propagating vortex breakdown. In experiments with subcritical
vortices, an upward-propagating bubble-type vortex breakdown is observed to occur
immediately following cutting of the vortex by the blade. The computed vortex core
area variation and the force on the blade for the subcritical case are found to
compare well with the theoretical prediction of Marshall (1994). The speed of the
upward-propagating vortex breakdown is also observed in both computations and
experiments (Krishnamoorthy & Marshall 1994) to compare well with theoretical
predictions for the ‘vortex shock’ speed. For supercritical vortices, only the expansion
wave forms on the downstream side of the vortex. A similar increase in core radius
on the upstream side of the vortex is evident in the computations presented by Lee,
Burgraff & Lonlisk (1998) for a supercritical vortex.
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The deformation of an inviscid vortex core due to penetration of a blade leading
edge into the vortex core was examined computationally using a vortex method by
Marshall & Grant (1996) for a case with no axial core flow. In an inviscid flow
the vortex lines within the core bend around the blade leading edge and stretch,
creating a region of strong vorticity just in front of the blade leading edge. During
this penetration, the vortex induces a low-pressure region near the blade leading
edge, which results in a force on the blade that draws it toward the vortex core. The
computed value of the force on the blade for the inviscid theory is found to be similar
to predictions using rapid distortion theory.

A series of wind-tunnel experiments examining orthogonal vortex–blade interaction
have been reported by a group at Glasglow University (Green, Doolan & Cannon
2000; Wang et al. 2002). These experiments are notable in that not only is the
blade pressure measured during cutting of the vortex, but the vortex characteristics
(strength, core radius, axial flow, etc.) are measured as well. A study reporting data
on vortex-induced blade forces and pressure fields during orthogonal vortex–blade
interaction is reported by Wang et al. (2002). A study employing PIV to examine
the vortex core response to cutting by a blade is given by Green et al. (2000). This
study provides quantitative data on vortex core size change due to blockage of axial
flow during vortex cutting. A study of the effect of cutting by multiple blades on the
vortex-induced force is given by Doolan, Coton & Galbraith (2001). This study shows
that prior cutting of a vortex by one blade can significantly reduce the force caused
by cutting of the vortex by a second blade, which presumably occurs due to effects
of reduction of the vortex axial flow caused by the first vortex cutting event.

The current study focuses on understanding the detailed fluid mechanics involved
in cutting of a vortex by a blade, both with and without vortex axial flow. This
problem involves cross-diffusion, and eventual vortex line reconnection, between the
incident vortex and the blade boundary layer, which is accompanied by cutting off of
the vortex axial flow at the blade location. The vortex cutting problem has not been
examined in the previous computational literature, which used inviscid models and
assumed instantaneous cutting of the vortex. Similarly, previous experimental studies
have examined only the consequences of vortex cutting, such as transient blade lift
force and wave propagation and core size variation of the vortex, rather than the fluid
mechanics of the cutting process itself. This problem is of considerable importance
because the blade lift force has its maximum magnitude as the blade leading edge
penetrates into the vortex core, so studies assuming instantaneous vortex cutting
would not be expected to capture this lift force accurately.

The present paper presents a computational study of the passage of a blade
orthogonally through a columnar vortex in an incompressible viscous fluid. Due to
computational limitations, the study is performed in a rather low Reynolds number
range, with vortex Reynolds numbers ReV ≡ Γ/ν = 44–488 and blade Reynolds
numbers ReB ≡ Uc/ν = 300–2000. The dominant physical processes governing the flow
are primarily inviscid, although like other vortex reconnection problems, the presence
of some slight viscosity is necessary in order for the vortex cutting (or reconnection)
to occur. The computations are performed using a finite-volume method that is
second-order accurate in both time and space on a block-structured grid (Lai 2000).
A brief description of the computational model is given in § 2, along with results of
a test of grid independence. Cases with a blade penetrating into a columnar vortex
with no ambient axial flow are discussed in § 3. The effect of ambient axial flow in
the vortex core on the vortex cutting process and unsteady blade force is examined
in § 4. Conclusions are given in § 5.
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Figure 1. Cross-sectional view of the computational mesh.

2. Computational model
Computations are performed which solve the full Navier–Stokes equations in

primitive-variable form using a finite-volume method (Lai 2000) and a block-
structured mesh with hexahedral elements. The solution domain comprises 17
implicitly coupled blocks. As shown in the mesh cross-section in figure 1, the
grid points are clustered to achieve high resolution within the vortex core, and
particularly in the region where the vortex impacts upon the blade leading edge.
The numerical method stores all dependent variables at the cell centres, and it
uses a novel interpolation method to yield second-order-accurate approximation
of the diffusive and convective fluxes on the cell boundaries for arbitrary meshes
(even for unstructured meshes). The PISO algorithm (Issa 1985) is used to couple
the momentum and continuity equations. In order to provide additional numerical
stability, the time derivative is weighted between a second-order time derivative
approximation and a first-order upwind approximation, with characteristically about
90–10 weighting ratio.

The computations are performed with a fixed blade subject to a uniform flow and
a columnar vortex initialized upstream of the blade, as shown in figure 2. A Cartesian
coordinate system is specified such that the uniform flow is in the x-direction, the
blade span is in the y-direction, and the normal to the blade central plane is in
the z-direction. Standard inflow and outflow boundary conditions are used in the
x-direction, symmetry boundary conditions are used in the y-direction, and periodic
boundary conditions are used in the z-direction. The computations are initialized
by first performing a steady-flow computation with uniform speed Upast a blade,
shaped as a NACA0012 airfoil with maximum thickness T and chord length c. The
flow domain is a box spanning the region −3 � x/c � 1, −1.25 � y/c � 1.25, and
−0.5 � z/c � 0.5, where z = 0 coincides with the blade centreplane and the y-axis
coincides with the blade leading edge. We then add to the steady flow velocity field a
series of three columnar vortices with circulation Γ at a distance d/c = 0.75 upstream
of the blade, where one vortex is within the computational domain and the other two
vortices are in neighbouring periods of the computational domain. These vortices may
either have zero axial flow or a prescribed non-zero axial flow according to the case
under consideration. The initial axial vorticity and velocity fields have a Gaussian
profile. An unsteady computation is then performed, during which time the vortex
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Figure 2. Schematic and boundary conditions for the computations.

is advected into the blade, and the computation stops when the vortex reaches the
outlet end of the box. We let σ0 and w0 denote the core radius and maximum axial
velocity obtained by fitting a Gaussian distribution to the vortex flow along the top
boundary of the computational domain at a time t = 0.75 when the blade leading
edge has penetrated to the nominal vortex centreline.

A variety of dimensionless parameters governing the orthogonal vortex–blade
interaction problem can be defined in terms of these quantities. We define both
a blade Reynolds number ReB ≡ Uc/ν and a vortex Reynolds number ReV = Γ/ν,
where ν is the kinematic viscosity. Dimensionless free-stream (impact) velocity U and
vortex axial velocity w0 can be divided by the nominal vortex maximum swirl velocity,
Γ/2πσ0, to form an ‘impact parameter’ I ≡ 2πσ0U/Γ and an ‘axial flow parameter’
A ≡ 2πσ0w0/Γ . An additional dimensionless parameter is formed by the ratio, T/σ0,
of the blade thickness T and the nominal vortex core radius σ0. All variables in the
remainder of the paper are non-dimensionalized using the blade chord length c as a
length scale and the ratio c/U as a time scale.

The computations reported in the paper are selected in order to highlight the effect
of these different dimensionless parameters on the transient blade lift force and to
compare our viscous computational predictions with results of previous experimental
and inviscid computational studies. A listing of the different computations performed
is given in table 1. Set A includes cases with no axial flow within the vortex core.
Case A.1 is used to compare with the predictions from the inviscid flow computations
of Marshall & Grant (1996) for a blade penetrating into a vortex core. Cases A.2–
A.4 are used to examine the effect of Reynolds number on orthogonal vortex–blade
interaction. Set B includes cases with non-zero vortex axial flow. Case B.1 is for a
subcritical axial flow, whereas Cases B.2–B.10 are for supercritical flow. Cases B.4–
B.6 are the same as cases A.2–A.4 but with non-zero axial flow. Case B.3 is used to
compare our computational results with the experimental data of Wang et al. (2002).
Cases B.7–B.9 are used to evaluate the effect of impact parameter on the blade lift
force, and Cases B.10 and B.4 are used to examine the effect of blade thickness on
the lift force.
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Case number 2πσ0U/Γ T/σ0 ReV 2πσ0w0/Γ ReB Symbol (figure 22)

A.1 5.1 1.0 294 0 2000
A.2 4.0 0.78 488 0 2000 O
A.3 4.0 0.78 244 0 1000
A.4 4.0 0.78 73 0 300

B.1 4.0 0.78 488 0.51 2000 +
B.2 10 0.56 45 0.85 1000 #
B.3 41 0.42 44 1.8 1000 *
B.4 4.0 0.78 488 3.8 2000 �
B.5 4.0 0.78 245 3.8 1000 �
B.6 4.0 0.78 73 3.8 300 ∇
B.7 4.0 0.78 488 3.0 2000 �
B.8 16 0.78 488 3.0 2000 �
B.9 33 0.78 488 3.0 2000 �

B.10 4.0 0.39 488 3.8 2000 %

Table 1. Summary of computations performed. Set A corresponds to zero axial flow and
set B to non-zero axial flow.
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Figure 3. Time variation of (a) lift coefficient on the blade and (b) minimum surface pressure
coefficient for 4 different meshes (Case B.4): mesh 1 (solid), mesh 2 (short-dashed), mesh 3
(dashed-dotted), and mesh 4 (long-dashed).

Grid independence is examined by repeating computations for Case B.4 for three
different meshes, in which the number of computational points varies by a factor
of 7.5 between the coarsest and finest mesh. The meshes are denoted by mesh 1
(994 000 grid points), mesh 2 (438 750 grid points), and mesh 3 (130 000 grid points).
All computations are performed with a time step of 0.005, and all cover the same
computational domain size. Over the time interval 0.5 � t � 1, during which the blade
cuts through the vortex core, the vortex circulation at the top surface of the flow
domain decreases in mesh 1 and mesh 2 by 3.6% and in mesh 3 by 5.1%.

The time variation of the lift coefficient CL ≡ L/ 1
2
ρU 2cb, where b is the span length,

L is the blade lift force, and ρ is fluid density, and the minimum blade surface pressure
coefficient Cp,min ≡ (p0 −pmin)/

1
2
ρU 2 are plotted for the three meshes in figure 3. Here

p0 denotes the pressure field on the blade surface in a steady flow with no vortex
present. The blade first impacts on the outermost part of the vortex core at about time
t = 0.5, and the blade has passed completely through the vortex core by about time
t = 1.0. We observe that the computations converge as the mesh is refined, such that
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Figure 4. Contour plots of the z-component of vorticity at four different times during the
vortex cutting process, for a case with no axial flow (Case A.2): (a) t = 0.5, (b) 0.75, (c) 1.0,
(d) 1.25.

the computed values on the most refined mesh (mesh 1) differ from those in the
medium refined mesh (mesh 2) by about by 1.4% for maximum lift magnitude and
by 1.0% for the minimum pressure. The minimum pressure is particularly sensitive to
spatial resolution because it is controlled by the thin vortex sheet wrapping around
the blade leading edge (Marshall & Grant 1996). All of the subsequent computations
reported are performed using the finest mesh (mesh 1).

The effect of height of the computational domain, in the direction of the vortex axis,
is examined by repeating the computation with the same resolution as the medium
mesh 2, but with twice the domain height, such that −1 � z/c � 1. The results for
this computation are denoted by mesh 4 in figure 3(a, b). The predicted minimum
pressure coefficient on the blade (figure 3b) for this case is very similar during
the vortex cutting process to that for mesh 2. The maximum lift force coefficient
(figure 3a) is nearly identical between mesh 2 and mesh 4 during the early part of
the vortex cutting process. However, during the later part of the cutting process the
computation with mesh 4 exhibits a larger peak in lift coefficient and a slower decay
in lift force in comparison to the mesh 2 computation. The resulting maximum lift
coefficient is about 13% larger for mesh 4 than it is for mesh 2. This effect would
appear to be caused by the downstream wave propagation on the vortex core together
with the presence of the periodic boundary condition in the z-direction. We have also
compared qualitative aspects such as onset of boundary layer separation and contours
of separated vorticity for mesh 2 and mesh 4 and found them to be nearly identical.

3. Case with zero ambient vortex axial flow
In this section we examine the basic physical processes occurring during penetration

of a blade into a vortex core for cases with no ambient vortex axial flow. An illustration
of this process is given in figure 4, in which contour lines of the vorticity component ωz
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Figure 5. Close-up views of blade tip region for same four times shown in figure 4.

in the y = 0 plane for Case A.2 are plotted at four different times. Regions with highest
values of ωz are shaded black and those with lowest values of ωz are shaded grey. At
time t = 0.5, the blade is just penetrating the outer part of the vortex core, and there
is little deformation of the vortex and no separation of the blade boundary layer. We
observe a region with positive values of ωz within the vortex core and a region with
negative values of ωz near the blade leading edge, which is caused by vorticity within
the blade boundary layer that is generated by the spanwise vortex-induced flow. As
the blade penetrates into the vortex core, the vortex core deflects around the blade
leading edge and the vortex lines within the vortex core are stretched, leading to a
region of increased values of positive ωz within the part of the vortex core into which
the blade penetrates (see figure 4b at t = 0.75). The blade penetration is accompanied
by cross-diffusion of vorticity from the vortex and that within the blade boundary
layer, resulting in rapid reconnection of vortex lines from the vortex to those in the
blade boundary layer. However, once the blade has penetrated slightly over halfway
through the vortex core, the sign of ωz in the blade leading-edge boundary layer
changes from negative to positive (see close-up views of the tip region in figure 5).
This change in sign of ωz is driven by a change in direction of the vortex-induced
spanwise velocity component as the vortex centreline is swept past the blade leading
edge. Following this change, the vorticity both within the blade boundary layer and
within the vortex have positive values of ωz, so the cross-diffusion between these two
vorticity regions is eliminated and the vortex cutting is halted.

Another view of the same process is illustrated in figure 6, where we plot vortex
lines in the y = 0 plane for the same four times as in figure 4. We initially observe
deflection of vortex lines from the blade leading edge and rapid reconnection of
vortex lines originating from the vortex to those in the blade boundary layer as
the blade penetrates into the vortex core. However, after the blade has penetrated
somewhat more than halfway through the vortex core, we observe that vortex lines
stop reconnecting to those in the blade boundary layer, and instead continue to wrap
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Figure 6. Vortex lines in the (x, z)-plane for the same four times shown in figure 4.
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Figure 7. Results for Case A.2 showing (a) time variation of positive circulation (solid curve)
and negative circulation (dashed-dotted curve) evaluated in the blade centreplane z = 0 and
(b) time variation of the shear stress on the blade leading edge.

in a thin vortex sheet around the blade leading edge. This effect is particularly evident
in figure 6(d), where we note that some vortex lines join to those in the boundary
layer and deflect downstream, into the blade wake, while other vortex lines deflect
upstream, wrap around the blade leading edge, and continue into the opposing section
of the vortex.

A plot showing the time variation of the positive and negative circulation in
the blade centreplane z = 0 is given in figure 7(a), which is obtained by separately
integrating regions with positive and negative values of ωz as follows:

Γ + =

∫
A

ω+
z da, Γ − =

∫
A

ω−
z da, (1)
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where

ω+
z =

{
ωz for all z such that ωz > 0

0 for all z such that ωz < 0,

ω−
z =

{
−ωz for all z such that ωz < 0

0 for all z such that ωz > 0.

Initially, Γ + is due to the columnar vortex and Γ − is due to the blade boundary
layer. In figure 7(a), the positive circulation is initially nearly constant and then
decreases rapidly between times t = 0.5 and 1.0 as the blade penetrates into the vortex
core. The negative circulation gradually increases as the vortex moves closer to the
blade, reaches a peak after the blade has penetrated about one-quarter of the way
through the vortex core, and then approaches zero after the blade has penetrated
about two-thirds of the way through the vortex core. The rapid decrease of the
negative circulation is associated with generation of positive ωz within the part of the
boundary layer near the blade leading edge, which occurs due to change in sign of
the vortex-induced spanwise velocity as the vortex is advected past the leading edge.
The reversal in direction of the spanwise velocity is evidenced by a change in sign of
the shear stress along the blade leading edge at about t = 0.8, as shown in figure 7(b).
This change in sign of ωz halts the cross-cancellation of the blade boundary-layer
vorticity with that within the columnar vortex. With no cross-diffusion, the remaining
vortex lines are left to wrap around the blade leading edge and stretch as the
vortex is advected forward. The stretching of these remaining vortex lines is balanced
by viscous diffusion in a manner analogous to a Burgers vortex sheet. Although our
computational domain was not sufficiently large to observe the long-time evolution of
the system, we expect that the remaining vortex sheet wrapping about the blade leading
edge will eventually decay in strength as the vortex advects sufficiently far downstream.

The formation of a remnant vortex sheet wrapping about the blade leading edge
due to incomplete cutting of the columnar vortex has similarities to the formation of
vorticity threads during reconnection of two vortex rings (see the review by Kida &
Takaoka 1994), although the physics underlying the two phenomena are different. For
vortex ring reconnection, the incomplete reconnection comes about because, as the
percentage of vortex lines increases in the ‘bridge’ region spanning from one vortex
ring to the other, the curvature of vortex lines in this region induces a velocity field
that reverses the direction of the initial relative velocity between the two vortex rings,
thus driving the two reconnecting vortices away from each other and leaving behind
unconnected vorticity ‘threads’ (Melander & Hussain 1989). In the vortex cutting
problem, it is the advection of the columnar vortex past the leading edge by the mean
flow which causes this reversal of velocity resulting in incomplete reconnection of
vortex lines with those in the blade boundary layer. Since the change in direction of
the spanwise velocity at the leading edge is caused by inviscid advection of the vortex,
we would not expect the percentage of uncut vortex to be sensitive to viscosity. To
test this assumption, a series of Cases (A.2–A.4) have been run with different vortex
Reynolds numbers (ranging from 73 to 488), but all other parameters the same.
The variation of positive and negative circulation for these cases, plotted in figure 8,
exhibits almost no change with Reynolds number. Plots showing vortex lines in the
y = 0 plane with Reynolds numbers ReV = 73 and 488 are given in figure 9. The lower
Reynolds number case exhibits a substantially thicker blade boundary layer, as might
be expected, but the vortex lines near the leading edge appear nearly the same in the
two cases.
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Figure 8. Effect of Reynolds number on the variation of (a) positive circulation and (b) neg-
ative circulation in the blade centreplane z = 0 for ReV = 488 (Case A.2, solid curve), 244
(Case A.3, dashed curve), and 73 (Case A.4, dashed-dotted curve).
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Figure 9. Vortex lines in the y = 0 plane for cases with (a) ReV = 488 (Case A.2) and
(b) ReV = 73 (Case A.4).

As the vortex advects close to the blade, a region of low pressure forms along
the blade leading edge. This low-pressure region is shown in figure 10(a), in which
contour lines of the relative pressure coefficient cp, rel are plotted as a function of
the arclength s of the blade cross-sectional profile and the spanwise distance y for
the upper and lower surfaces of the blade at time t = 0.8 for Case A.2. The rela-
tive pressure coefficient is defined in terms of the difference between the pressure value
p(s, y, t) at the same point in the unsteady flow (with the vortex) and the pressure
psteady(s, y) for the steady-state flow (without the vortex) as

cp,rel =
p(s, y, t) − psteady(s, y)

1
2
ρ U 2

. (2)

The time variation of the computed minimum pressure on the blade surface is
compared with the inviscid flow computational results of Marshall & Grant (1996),
obtained using a discrete vortex method, in figure 10(b) for Case A.1. In this figure
we plot the vortex-based pressure coefficient cp,V , defined by

cp,V =
psteady − pmin(t)

ρΓ 2/2σ 2
, (3)

where pmin(t) is the minimum pressure on the blade surface at a given time. The
time variation of the minimum pressure coefficient is observed to be in reasonable
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(Case A.1, solid curve) and for the inviscid flow computations of Marshall & Grant (1996)
(dashed curve).
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Figure 11. Limiting streamlines of the surface shear stress for the difference flow, obtained
by subtracting the steady-state flow, for Case A.2 at times (a) t = 0.5, (b) 0.75, (c) 1.0, and
(d) 1.25. The blade upper surface corresponds to s < 0 and the lower surface to s > 0.

agreement with inviscid results up to the time at which the blade has penetrated
about three-quarters of the way through the vortex core, at which point the inviscid
flow computations are discontinued. Beyond this point the viscous flow computations
indicate that the minimum pressure coefficient peaks and then decreases.

Streamlines of the shear stress vector obtained from the perturbation velocity field
are plotted on the blade surface at four different times for Case A.2 in figure 11. The
steady-state velocity is subtracted from the full velocity field prior to plotting these
streamlines in order to highlight the effect of the vortex-induced flow. The streamlines
are useful in determining the direction of change, relative to the steady velocity field,
caused by the presence of the vortex and the blade boundary layer response to the
vortex. Before vortex impact on the blade (figure 11a), the vortex orientation is such
as to increase the free-stream flow in the lower half of the figure and decrease the free-
stream flow in the upper half of the figure. After the steady-state flow is subtracted, the
latter region appears to be flowing toward the blade leading edge. A separatrix forms
on the upper part of figure 11(a), on the side of the blade where the vortex-induced
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flow is oriented opposite to the direction of the free-stream velocity. As the blade
begins penetrating into the vortex core (figure 11b) the region in which the vortex-
induced velocity perturbation is oriented in the upstream direction increases in size.
As the vortex lines from the vortex begin to reattach to those in the blade boundary
layer, inward-spiralling centre points form on each side of the blade, corresponding
to the centre of the cut vortex (figure 11c). Once the cut vortex advects back onto
the blade surface (figure 11d), we observe the formation of lines of flow convergence
originating near the vortex centers and trailing downstream. Since these convergence
lines are oriented in the streamwise direction, they would remain even after adding
the steady-state flow back in. This suggests that the blade boundary layer separates
along these convergence lines, feeding boundary-layer vorticity into the vortex core.
Similar entrainment of blade boundary-layer vorticity following vortex cutting was
observed experimentally by Krishnamoorthy & Marshall (1994) by injecting yellow
dye along the blade leading edge and illuminating entrainment of the dye into the
cut vortex core (dyed red) using laser-induced fluorescence.

4. Cases with axial core flow
Cases with various axial flow rates have been examined to determine the effect of

vortex axial flow on the vortex-induced blade force and the vortex-cutting process.
Plots showing contours of ωz at different times for a case with supercritical vortex
flow (Case B.4) are given in figure 12. In contrast to the case with no axial flow shown
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in figure 4, we observe an intensification of ωz in the part of the vortex below the
blade and a decrease in ωz in the part of the vortex above the blade, corresponding
to a decrease and increase in core radius, respectively. This phenomenon is due to
the effect of the decrease in axial flow rate as the fluid approaches the blade from
above in compressing vortex lines aligned in the z-direction, and the corresponding
stretching of vortex lines below the blade as the axial flow accelerates to the ambient
value. Similar variation in the vortex core radius is observed in the inviscid flow
computations with instantaneous vortex cutting and in the LIF experiments by
Marshall & Krishnamoorthy (1997), as well as in the PIV measurements of orthogonal
vortex–blade interaction by Green et al. (2000).

Another difference that is apparent in comparing the results with axial flow in
figure 12 for Case B.4 to those without axial flow in figure 4 for Case A.2 is the
ejection of blade boundary-layer fluid from the lower blade surface following vortex
cutting. This vorticity ejection can be observed in figure 12(d) as a finger of fluid
emanating from the lower side of the blade boundary just upstream of the cut vortex.
The ejection of blade boundary-layer fluid occurs at the location where the vortex-
induced velocity opposes the free-stream velocity, leading to velocity back-flow within
the boundary layer. This boundary-layer ejection does not occur immediately when
the vortex is cut (e.g. in figure 12c), but forms later after stretching by the axial flow
has sufficiently strengthened the vorticity in the lower portion of the vortex. The fact
that similar boundary-layer ejection does not occur for the upper half of the vortex or
for the case without axial flow is no doubt due to the fact that the vorticity within the
vortex core is weaker in these cases, such that the vortex-induced velocity magnitude
just outside the core is smaller.

Prior to performing the study, we had speculated that the vortex axial flow would
cause separation from the blade leading edge as it penetrates into the vortex core.
It is interesting that we do not observe separation from the leading edge in any of
the computational cases considered in the current study. Rather, the reconnection
of vortex lines from the vortex to those within the blade boundary layer, and
the subsequent blockage of the axial flow, appears to occur quickly enough that
separation from the leading edge does not have a chance to occur. To examine this
point further, the time variation of the positive circulation Γ + and the axial flow rate
Q =

∫ ∞
−∞

∫ ∞
−∞ w dx dy evaluated in the blade centreplane z = 0, non-dimensionalized

by their initial values, are plotted in figure 13 for three different vortex Reynolds
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numbers (Cases B.4–B.6). The positive circulation decreases abruptly at a time of
about t = 0.5, as the blade leading edge penetrates into the vortex core. The rate of
decrease of the positive circulation starts to level off at a time of about 0.8, just after
the blade leading edge passes the nominal vortex centreline, and continues levelling
off with increasing time. The axial flow rate begins decreasing much earlier than the
positive circulation, at a time of about t = 0.3, due to the fact that the azimuthal
vorticity responsible for the axial flow lies on the periphery of the vortex core rather
than in the core centre. The axial flow rate decreases nearly linearly with time until
it goes approximately to zero at a time of about t = 1.1, at which point the blade
leading edge has passed entirely through the nominal vortex core position. Neither the
positive circulation nor the axial flow rate exhibit significant dependence on Reynolds
number.

Contour plots of axial vorticity ωz and axial velocity w in the blade centreplane
z = 0 are given for three different times during the blade penetration into the vortex
core in figure 14. At time t =0.5, we observe positive ωz values within the vortex core
and negative ωz within the blade boundary layer. The vortex core shape is slightly
elliptical in both the axial vorticity and axial velocity plots. At t =0.75, the vortex
core has become highly deformed and the region of negative vorticity within the blade
boundary layer has diminished in size. At t = 0.9, at which point the blade leading
edge has passed nearly completely through the vortex core, the vortex has deformed
into a thin sheet along the leading edge with a bulge in the middle. The sign of
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Figure 15. Limiting streamlines of the surface shear stress for the difference flow, obtained
by subtracting the steady-state flow, for Case B.4 at times (a) t =0.5, (b) 0.75, (c) 1.0, and
(d) 1.25. The blade upper surface corresponds to s < 0 and the lower surface to s > 0.

vorticity within the blade boundary layer has changed to be the same as that within
the vortex, as described in the previous section.

The breakdown of symmetry between the upper and lower sides of the blade due to
the presence of vortex axial flow is also observed by comparing the streamlines of the
shear stress of the perturbation velocity on the blade surface (obtained by subtracting
the steady-state velocity from the full velocity field) for Case B.4 (figure 15) to that
for Case A.2 without axial flow (figure 11). Prior to impact of the blade onto the
vortex core, the shear streamlines of the perturbation velocity field appear almost
symmetric (e.g. figure 15a at t =0.5). However, almost immediately following impact
of the blade leading edge on the outer surface of the vortex core (figure 15b) the
streamlines become highly non-symmetric, with the separatrix growing larger on
the upper surface of the blade and diminishing abruptly on the lower surface. As the
vortex is cut and advects away from the leading edge, we observe inward-swirling
streamlines, indicative of the presence of significant entrainment of boundary-layer
fluid into the vortex core.

The asymmetry in flow field between the upper and lower sides of the blade leads
to differences in blade surface pressure, which subsequently leads to a transient lift
force on the blade. The pressure is initially nearly symmetric between the upper and
lower surfaces when the vortex is located well upstream of the blade. The pressure
asymmetry following vortex cutting is exhibited in figure 16, in which the difference
between the blade surface pressure coefficient cp ≡ (p − p0)/

1
2
ρU 2 for Case B.4 with

axial flow and that for Case A.2 without axial flow is plotted at t = 1.25 as a function
of the arclength s around the blade profile. Consistent with the observed variation
in core radius, it is found that the pressure on the upper blade surface increases and
that on the lower surface decreases compared to the case without axial flow. This
difference gives rise to a net downward lift force on the blade.

The integral of the blade surface pressure times the surface unit normal over a cross-
section L of the blade is used to form the normal force coefficient CN ≡ −

∫
L

pn ds,
which is of interest because it can be measured experimentally using an array of
pressure transducers embedded in the blade surface. A plot of the time variation
of the computed normal force coefficient for Case B.3 is compared in figure 17
with experimental results of Wang et al. (2002) for a comparable case with impact
parameter I = 36.8, axial flow parameter A = 1.62, and ratio of blade thickness to
vortex core radius T/σ0 = 0.42. These parameters are within 10% of those given in
table 1 for Case B.3. It is noted that some of the experimental vortex parameters (such
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as vortex circulation and core radius) have large experimental uncertainties due to the
inherent difficulty in measuring the unsteady vortex state. For instance, Wang et al.
(2002) report 35% uncertainty in vortex circulation and 55% uncertainty in vortex
core radius. The experimental data for the normal force coefficient exhibit a rapid
increase during penetration of the blade into the vortex core, followed by a levelling
out to a constant value following cutting. The computational results yield a peak value
of the normal force coefficient that is close to that in the experimental data, but the
computations exhibit a slower increase in blade normal force during the initial stages
of blade penetration into the vortex core and the computed normal force coefficient
decreases following cutting of the vortex, rather than maintaining a nearly constant
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dashed-dotted curve).

value as seen in the experiments. These differences between the experimental and
computational results are most likely due to the large difference in vortex Reynolds
number in the two cases, which measured about ReV = 51 000 in the experiments
and about ReV = 44 in the computations in Case B.3. The vortex would be expected
to exhibit more deformation of the vortex lines during penetration as the Reynolds
number increases because the vorticity cross-diffusion rate between the vortex core
and the blade leading-edge boundary layer would be slower at higher Reynolds
numbers for a given vorticity gradient. As the blade penetrates further into the vortex
core (and the vortex lines deform around the blade leading edge), the vorticity gradient
at the leading edge increases, allowing the vorticity cross-diffusion rate to approach
the values that it would have for a more viscous fluid at a time with less blade
penetration. Delay of the vortex reconnection at higher Reynolds number would
cause the vortex to stretch into a thin sheet wrapped around the blade leading edge
at the penetration location (as observed in the inviscid computations at Marshall &
Grant 1996), so that cutting of the axial flow (and subsequent imposition of the lift
force on the blade) would occur over a shorter time period for a high Reynolds
number case than for a lower Reynolds number case. Viscous decay of the vortex
would also explain the observed decrease in normal force coefficient near the end of
the computations.

The effect of axial flow parameter on the blade lift coefficient, generated by
asymmetry in the pressure field, is plotted in figure 18 for Case A.2 (with no axial
flow), Case B.1 (subcritical axial flow, A= 0.51) and Case B.4 (supercritical axial flow,
A= 3.8). The magnitude of the lift force increases with time from nearly zero for
times before the blade penetrates into the vortex core (t < 0.5), peaks at a time at
which the blade leading edge has penetrated just past the vortex centroid (t ≈ 0.84),
and then decays gradually with later time. Significant lift force exists even after the
vortex has been cut by the blade (t > 1) due to the asymmetry between the upper and
lower blade surfaces. The maximum lift magnitude is zero for the case with no axial
flow and increases monotonically as the axial flow rate is increased.
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Figure 19. Effect of vortex Reynolds number on time variation of blade lift force, plotted
for Cases B.4 (solid curve), B.5 (dashed curve), and B.6 (dashed-dotted curve).
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Figure 20. Effect of blade thickness on pressure-induced lift coefficient on the blade, for
Case B.4 (T/σ0 = 0.78, dashed curve) and Case B.10 (T/σ0 = 0.39, solid curve).

The blade lift coefficient is plotted for three different vortex Reynolds numbers
in figure 19, with the same values of axial flow parameter and impact parameter
(Cases B.4–B.6). Within the range of variation considered in this work, the Reynolds
number appears to have relatively little effect on the lift force. For instance, as the
vortex Reynolds number increases by a factor of 6.7, the maximum lift force in
figure 19 changes only by about 8%. Similarly, figure 20 shows lift coefficient for two
cases with different blade thickness (Case B.4 with T/σ0 = 0.78 and Case B.10 with
T/σ0 = 0.39), but all other variables held the same. The maximum lift force differs by
only about 5% for these two cases.

The effect of impact parameter on lift force is examined in figure 21, where we plot
lift force coefficient for cases with three different values of the free-stream velocity



100 X. Liu and J. S. Marshall

0 0.5 1.0
–0.035

–0.030

–0.025

–0.020

–0.015

–0.010

–0.005

0

t

CL

Figure 21. Effect of impact parameter on time variation of blade lift force plotted for
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Figure 22. Correlations for lift force coefficients using data from Cases B.1–B.10: (a) maxi-
mum value of magnitude of lift coefficient C ′
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L versus dimensionless time. The solid lines are a best fit to the data. The computational
runs corresponding to the different symbols are indicated in table 1.

U (Cases B.7–B.9) but the same values of the axial flow parameter and the vortex
Reynolds number. The maximum lift coefficient magnitude decreases with increase
in impact parameter, but the lift itself is found to increase nearly linearly with U .
This observation implies that the ratio C ′

L ≡ L/ 1
2
ρΓ Uσ0 should depend only on the

axial flow parameter A ≡ 2πσ0w0/Γ . The maximum value of |C ′
L| is plotted versus

A in figure 22(a) for Cases B.1–B.10 and is found to exhibit an approximately
linear dependence. Assuming that C ′

L varies linearly with A, we correlate all of our
data (Cases B.1–B.10) by plotting a new lift coefficient C ′′

L ≡ L/πρUw0σ
2
0 versus the

dimensionless time in figure 22(b). The root-mean-square variation of the maximum
lift coefficient from the best-fit curve in figure 22(b) is 14%.
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5. Conclusions
Computations are reported for cutting of an initially columnar vortex by a blade

for cases both with and without axial vortex flow and for different values of the vortex
Reynolds number, impact parameter and thickness parameter. The computations are
validated by comparing to experimental data and to previous (inviscid) computational
results. During blade penetration into the vortex core, cross-diffusion between vorticity
in the blade boundary layer and that within the vortex causes vortex lines originating
in the columnar vortex to reconnect to those within the blade boundary layer. It
is found, however, that the vortex is always incompletely cut by the blade, such
that a vortex sheet originating as a remnant of the columnar vortex will remain
wrapped about the blade leading edge for a significant time following passage of
the blade through the vortex core for all Reynolds numbers. This phenomenon is
caused by a reversal in the direction of the vortex-induced spanwise velocity along
the blade leading edge as the vortex centroid is advected past the leading edge. Once
the spanwise velocity changes direction, the sign of the surface vorticity at the blade
leading edge quickly changes to be the same as that of the columnar vortex, so that
the remaining sections of the columnar vortex have no vorticity of the opposite sign
with which to cross-diffuse (which in turn halts the vortex line reconnection process).
The percentage of the vortex left in this remnant vortex sheet wrapping about the
blade is not significantly affected by Reynolds number for the range of Reynolds
numbers considered in the current work.

The presence of an axial flow within the columnar vortex causes development of
asymmetry between the upper and lower blade surfaces. In agreement with previous
experimental and computational studies, we find that the vortex core radius increases
within the upper portion of the vortex (which is axially compressed by the axial flow)
and decreases in the lower portion of the vortex (which is stretched by the axial
flow). The decreased core radius in the lower section of the cut vortex results in an
increased axial vorticity component and increased swirl velocity at the periphery of
the vortex core. This increase in the swirl velocity leads to boundary-layer separation
and ejection of fluid from the blade boundary layer just upstream of the section of
the cut vortex below the blade. We examine the time variation of the axial flow and
the positive circulation within the blade centreplane as the blade penetrates into the
vortex core in order to determine the relationship between cutting of the vortex by
reconnection of vortex lines and blockage of the axial flow. Somewhat surprisingly, it
is found that the axial flow is blocked quickly enough during blade penetration into
the vortex that no separation of boundary-layer fluid from the blade leading edge is
observed as the blade penetrates close to the vortex centre, at least for the range of
Reynolds numbers considered in the current study.

The asymmetry of the blade upper and lower surfaces in the presence of an axial flow
leads to a transient lift force on the blade. The predicted peak value of the lift force
compares reasonably well with experimental results. The lift force magnitude is found
to increase monotonically with increase in axial velocity and impact parameter, but not
to be significantly influenced by change in Reynolds number or blade thickness ratio
in the range of values considered in the study. Comparison of computed results at low
Reynolds number with experimental data at much higher Reynolds number indicates
that the maximum lift force on the blade is approximately independent of Reynolds
number, but that the time variation of the lift force is more rapid during blade
penetration for higher Reynolds number cases. We also note that while the presence
of some non-zero viscosity is necessary for vortex cutting to occur, most of the physical
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processes described in the previous paragraphs which govern the cutting process are
inviscid. Even such inherently viscous processes as vorticity cross-diffusion are not
strongly influenced by viscosity, since the vorticity gradient at the blade leading edge
will become increasingly steep as the blade penetrates into the vortex core. Similarly,
boundary-layer ejection typically corresponds to the presence of a stagnation line in
the inviscid flow field at the surface.

The observation that the blade lift increases approximately linearly with both
blade–vortex impact velocity U and axial velocity w0 leads to the development of a
correlation for the blade lift coefficient, where the maximum lift coefficient is expressed
as a function of density, core radius, impact velocity and vortex axial velocity. This
correlation fits all data obtained in the study with a root-mean-square variation of
the maximum lift coefficient of 14%. It is of interest that much of the focus in the
rotorcraft aerodynamics community is on accurate prediction of circulation of rotor
wake vortices; however, the present study suggests that accurate prediction of the
vortex core radius and axial velocity is significantly more important for this type of
blade–vortex interaction.
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